
Articles

72 AI MAGAZINE

The Tactical Language and Culture Training System (TLCTS)
helps people quickly acquire functional skills in foreign lan-
guages and cultures. It includes interactive lessons that focus on
particular communicative skills and interactive games that
apply those skills. Heavy emphasis is placed on spoken com-
munication: learners must learn to speak the foreign language
to complete the lessons and play the games. It focuses on the
language and cultural skills needed to accomplish particular
types of tasks and gives learners rich, realistic opportunities to
practice achieving those tasks.

Several TLCTS courses have been developed so far. Tactical
Iraqi, Tactical Pashto, and Tactical French are in widespread use
by U.S. marines and soldiers, and increasingly by military serv-
ice members in other countries. Additional courses are being
developed for use by business executives, workers for non-
governmental organizations, and high school and college stu-
dents. While precise numbers are impossible to obtain (we do
not control copies made by the U.S. government), over 40,000
and as many as 60,000 people have trained so far with TLCTS
courses. More than 1000 people download copies of TLCTS
courses each month, either for their own use or to set up com-
puter language labs and redistribute copies to students. Just one
training site, the military advisor training center at Fort Riley,
Kansas, trains approximately 10,000 people annually.

Artificial intelligence technologies play multiple essential
functions in TLCTS. Speech is the primary input modality, so
automated speech recognition tailored to foreign language
learners is essential. TLCTS courses are populated with “virtual
humans” that engage in dialogue with learners. AI techniques
are used to model the decision processes of the virtual humans
and to support the generation of their behavior. This makes it
possible to give learners extensive conversational practice.
Learner modeling software continually monitors each learner’s
application of communication skills to estimate the learner’s

Copyright © 2009, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Tactical Language and
Culture Training Systems:

Using AI to Teach Foreign Languages and Cultures

W. Lewis Johnson and Andre Valente

n The Tactical Language and Culture Training
System (TLCTS) helps people quickly acquire
communicative skills in foreign languages and
cultures. More than 40,000 learners worldwide
have used TLCTS courses. TLCTS utilizes arti-
ficial intelligence technologies during the
authoring process and at run time to process
learner speech, engage in dialogue, and evaluate
and assess learner performance. This paper
describes the architecture of TLCTS and the
artificial intelligence technologies that it
employs and presents results from multiple
evaluation studies that demonstrate the bene-
fits of learning foreign language and culture
using this approach.

Articles

SUMMER 2009 73

Figure 1. Example Skill Builder Exercise.

level of mastery of these skills. This helps instruc-
tors and training supervisors to monitor learners’
progress and enables the software to guide learners
to where they need to focus their training effort.
Artificial intelligence is also integrated into the sys-
tems’ content authoring tools, assisting content
authors in the creation and validation of instruc-
tional content.

System Overview
TLCTS courses are currently delivered on personal
computers, equipped with headset microphones.
Each course contains a set of interactive Skill
Builder lessons, focusing on particular commu-
nicative skills. Figure 1 illustrates an exercise page
from the Skill Builder of Encounters: Chinese Lan-
guage and Culture, a college-level Chinese course
being developed in collaboration with Yale Uni-
versity and Chinese International Publishing
Group. The figure is an example of a minidialogue

exercise where the learner practices a conversa-
tional turn in the target language. Here the learn-
er must think of an appropriate way to say his
name. His response, “Wŏ xìng Lǐ Dàwĕi” (My fam-
ily name is Li Dawei) exhibits a common mistake
made by beginning language learners: to confuse
the semantically similar words “xìng” (family
name is) and “jiào” (name is). A correct response
would be “Wŏ jiào Lǐ Dàwĕi.” The virtual tutor
(bottom left) gave appropriate corrective feedback.
The spoken conversational system recognized the
utterance (bottom center), and was able to recog-
nize the error in the utterance, so that the virtual
tutor can respond accordingly. Note that in exer-
cises there is no single correct answer: any utter-
ance that correctly conveys the intended meaning
will be accepted. Depending on the type of exer-
cise, the system can give feedback on pronuncia-
tion, morphological and grammatical forms, cul-
tural pragmatics, or word choice, as in this
example.

Games play an essential role in TLCTS courses,
providing essential practice opportunities. Each
course incorporates a scenario-based Mission
Game, where learners play a character in a three-
dimensional virtual world that simulates the target
culture. Figure 2 shows a screenshot from the Mis-
sion Game in Tactical Dari, currently being used by
U.S. military service members to learn the Dari lan-
guage and Afghan culture in preparation for
deployment to Afghanistan. Here the player (left)
is engaged in a meeting with a village leader (the
malek) to discuss reconstruction plans for a local
school. A transcript of the conversation to this
point is shown in the top center of the screen.

The learner speaks to the malek by first clicking
the microphone icon (top right) and then speak-
ing into a headset microphone. He or she is free to
discuss a range of topics (far top left) and express
each topic in a range of ways (top left, below).
Although this screen shot is displaying help menus
that make these choices explicit, in ordinary use

these choices are hidden, and the learner is encour-
aged to engage in free spoken conversation in the
foreign language in the topic at hand. This con-
trasts radically with typical uses of speech recogni-
tion in other language-learning systems, which
either do not support spoken dialogue at all or
present learners fixed sets of choices to read off of
the screen.

The Alelo Architecture
The architecture underlying TLCTS (figure 3) sup-
ports a set of complementary training products
built from a common set of content specifications.
All content in TLCTS courses is specified in Exten-
sible Markup Language (XML) and stored in a web-
compatible content repository. A web portal
named Kona1 provides access to the repository and
supports collaborative editing. Kona supports a
collection of web-based authoring tools that
enable authors to edit and modify content specifi-

Articles

74 AI MAGAZINE

Figure 2. Example Mission Game Dialogue.

Articles

SUMMER 2009 75

Learners Instructors

Data

Export
Kahu

(Dashboard / LMS)

Hilo
(lessons)

Tide
(dialog)

Wave
(audio)

Hua
(language model)

Waihona
(libraries)

Paheona
(art assets)

Huli
(search / references)

Authoring Tools

Hoahu
User / Trainee

Data Warehouse

Content Repository
(Multimedia, XML, Databases)

Kona
(Server Framework / Portal)

Kapili
(Build System)

Lapu
(Unreal client)

Honua (Social Simulation)

Authors /

Artists /

Production /

Programmers

ResearchersTrainee Clients / GUIs

Keaka
(Multiplayer client)

Wele
(web client)

Uku
(handheld client)

Figure 3. Overall Alelo Architecture.

cations using their web browsers. The authoring
tools are integrated in the portal, but each tool
applies to a different subset of the content. One
tool (Hilo) edits lesson content, while another
(Tide) edits dialogue specifications within lessons
and game episodes. Production staff edit and man-
age speech recordings using the Wave audio tool.
The Hua editor is responsible for managing the
language model describing the target language:
words and phrases, their spellings, phonetic tran-
scriptions, reference recordings, and translation.
Nonverbal gestures and character models are
defined using Waihona and Paheona, respectively.

Each project is represented in Kona as a “book,”
containing a series of “chapters” (each specifying
an individual lesson or game scene). Project mem-

bers can check out individual chapters (that is, lock
them for editing), update them using web-based
authoring tools, and then check them back in. An
underlying version-control framework (Subver-
sion) prevents simultaneous edits and allows roll-
back to earlier versions if necessary. Our goals have
been to make the authoring cheaper, faster, better,
and easier and to eliminate the need for engineers
and researchers to be involved in authoring and
production.

The architecture supports several delivery plat-
forms. Our Lapu client is the first client that we
developed, and is still the most widely used. Lapu
runs on a Windows PC equipped with a headset
microphone. Lapu is built on top of Epic Games’
Unreal Engine 2.5, which handles scene rendering

and provides a set of user interface classes. Figure 4
shows the Lapu architecture in further detail,
focusing on the support for social simulations (dia-
logues with animated characters). The learner com-
municates with characters in the game, using voice
and gestures selectable from a menu. The input
manager interprets the speech and gestural input
as a communicative act (that is, speech acts aug-
mented with gestures). The social simulation
engine (Honua) determines how the environment
and the characters in it respond to the learner’s
actions. The character actions are realized by the
action scheduler, which issues animation com-
mands to the unreal engine. As the learner inter-
acts with the system, the learner model is updated
to provide a current estimate of learner skill mas-
tery. Interaction logs and learner speech recordings
are saved for subsequent analysis. These compo-
nents are implemented primarily in Python, with
some supporting routines in C++ and UnrealScript
(the scripting language for the unreal engine).

Reliance on UnrealScript is minimized to facilitate
porting to other game engines.

We have recently developed a multiplayer
extension (Keaka) that enables multiple learners to
interact with the virtual world at the same time.
Each learner interacts with one character at a time,
can overhear the conversations of other learners,
and can also talk to other learners through voice
over IP. Keaka is being used to support mission
rehearsal exercises, in which teams of learners
must speak with nonplayer characters in order to
gather information necessary to complete their
mission.

A new web-based client named Wele is also
being increasingly used to deliver content. Wele
currently supports the Skill Builder, and we are
extending it to include Mission Game implemen-
tations. Wele is accessed through a web browser
and is implemented in the Adobe Flex2 Internet
application framework. Wele runs the speech rec-
ognizer on the client computer as a plug-in. Inter-

Articles

76 AI MAGAZINE

Scenario Logic

Agents

Input Manager

Action
Scheduler

Mission Engine

Simulated Game World (Game Engine)

Social Stimulation Engine

Interactive
Social Simulation

Learner Model

Learner

Skills Model

Speech
Recognizer

Verbal
Behavior
(speech
sound)

Utterance
Hypothesis

Behavior
schedules

Information
about action
status and
world state

Behavior
Instructions
for game
agents

Learner
Ability

Skills /
Missions

World
state

Parameterized
Communicative Act

Nonverbal
Behavior
(gestures

etc.)

Other control actions

System events Audio Files

RecordingsLogs

Figure 4. Lapu Client Simulation Architecture.

Articles

SUMMER 2009 77

active dialogues and animations are realized as
Flash files inserted into a web page and are con-
trolled at run time using finite state machines.

Handheld device implementations (Uku) allow
trainees to continue their training when they do
not have access to a PC. One version of Uku cur-
rently under beta test delivers TLCTS Skill Builder
content on iPods. Media assets (instructional texts,
recordings, images, and videos) are extracted from
the repository, converted into iPod-compatible for-
mats, and organized using the iPod Notes feature3.
Example dialogues between animated characters
are converted into videos. We developed a proto-
type for the Sony PlayStation Portable, and we are
evaluating other handheld platforms. All clients
except for the iPod provide interactive exercises. In
cases where we are able to port the speech recog-
nizer to the handheld device, the client imple-
mentation utilizes the speech recognizer; for plat-
forms that cannot run the speech recognizer
effectively, speech-recognition input is replaced
with alternative methods, such as selection from
menus of possible utterances.

A lightweight learning management system
called Kahu communicates with the client com-
puters over a local network. Our users frequently
organize their computers in learning labs using ad
hoc local networks (using Windows shares), then
move their computers around and reorganize them
in different configurations. Kahu provides and
manages repositories for learner profiles and sup-
ports easy reconfiguration and disconnected oper-
ation of these labs. The system provides mecha-
nisms for an instructor or training manager to
create and configure users and groups of users and
produce progress reports. We also use it to help
retrieve learner profiles, system logs, and record-
ings from learning labs and store them in a data
warehouse, where they may be retrieved for further
analysis. The recordings are used to retrain and
improve the speech recognizer, while the logs and
learner profiles are used in research to understand
how the users employ the learning environment
and to suggest areas for further improvement of
the software.

Uses of AI Technology
Artificial intelligence technologies are employed
extensively in the Alelo run-time environments
and authoring tools. The following is a summary of
the roles that artificial intelligence currently plays,
starting with the run-time environment. However,
in practice, authoring concerns and run-time con-
cerns are inextricably linked; run-time processing
methods cannot be employed if they place an
unacceptable burden on authors to create content
for them.

Authoring
Our authoring tools are designed to help authors
create the rich content representations required by
our AI-based system, and perform AI-based pro-
cessing themselves. For example Hilo, our lesson
authoring tool, supports rich utterance representa-
tions for speech and natural language processing.
Utterances are modeled in different channels—the
native orthography of the foreign language, an
“ez-read” transliteration that is intended as a pho-
netic transcription in Roman characters, a
phoneme sequence used by the speech recognizer,
and an English translation. Each utterance is also
linked to the language model library so it can be
centrally managed.

For some languages we augment the authoring
tools with tools that translate between channels.
Chinese and French provide two contrasting
examples of how this is done. In Chinese, authors
specify the written form in traditional Chinese
characters and specify the ez-read form in Pinyin.
Then the run-time system translates automatically
from traditional characters to simplified characters
as needed and translates from Pinyin to phoneme
sequence for speech recognition purposes. For
French we provide authors a tool that generates
phoneme sequences from written French and then
generates an ez-read view from the phoneme
sequences. French spelling is highly irregular, so
the phoneme sequence generator is not fully auto-
matic. Instead the phoneme sequence generator
proposes alternative pronunciations, based on a
lexicon of French words, and lets the author
choose the correct phoneme sequence.

Our Tide authoring tool provides several editing
functions and analysis tools to specify interactive
dialogues. Authors specify the utterances that may
arise in the course of a conversation, their meaning
in terms of acts, and the possible interactions
between acts in the conversation. Tide supports
several dialogue models, from simple scripts to
branched stories to agent-centered models. It pro-
vides graphical tools with a custom vocabulary of
abstractions to make interaction authoring as easy
as possible. From the specifications, it automati-
cally generates program code, which can be incor-
porated into the TLCTS clients. Finally, Tide pro-
vides a model-checking tool for testing dialogue
modeling codes against the specification. This
makes it possible for authors to produce a substan-
tial portion of the dialogue modeling work them-
selves.

Our Hua tool manages the language model,
which contains the library of words and utterances
that are taught in the course. It interoperates with
Hilo and Tide as needed so that as authors edit
content they can maintain a consistent language
model throughout. It also provides for different
roles: content developers can add utterances quick-

ly but that content is later verified and corrected
by more senior language experts playing the role
of “librarian.” This helps to eliminate errors and
reduces the role of natural language processing
specialists in creating and maintaining linguistic
resources.

These authoring tools have enabled us to
increase the quality and quantity of authored con-
tent and have made it possible to maintain multi-
ple versions of content for different classes of
learners and different platforms. Table 1 shows
some of the productivity improvements that these
tools are yielding. It compares Tactical Iraqi 3.1,
developed in 2006, Tactical Iraqi 4.0, developed in
2007, Tactical French 1.0, also developed in 2007,
and Tactical Dari 1.0, developed in 2008. The
authoring tools doubled the number of lesson
pages, vocabulary words, dialogues, and Mission
Game scenes in Tactical Iraqi 4.0 vis-à-vis 3.1.
Development of Tactical French 1.0 did not start
until late 2006, yet it has about the same amount
of Skill Builder material as Tactical Iraqi. Tactical
Dari 1.0 was developed in less time and on a con-
siderably smaller budget than Tactical French, and
yet it is comparable in size (vocabulary is smaller
because it is a much more complex language).

Speech Recognition
TLCTS is particularly ambitious in its reliance on
speech-recognition technology. Recognition of
learner speech is particularly demanding and chal-
lenging. Beginning language learners sometimes
mispronounce the foreign language very badly and
blame the software if it is unable to recognize their
speech. The speech recognizer also needs to be very
discriminating at times and accurately detect
speech errors to provide feedback to learners. Typ-
ical speech recognizers, in contrast, are designed to
disregard speech errors and focus on decoding
speech into text. Our approach must apply equal-
ly to common languages such as French and to less
commonly taught languages such as Pashto or
Cherokee, for which few off-the-shelf speech-

recognition resources exist. For these reasons we
rejected prepackaged speech-recognition solutions
and opted to develop our own tailored speech-
recognition models.

We employ hidden Markov acoustic models
developed using the hidden Markov model toolkit
(HTK)4 and delivered using the Julius5 open source
speech-recognition toolkit. Models are developed
iteratively in a bootstrapping process. We construct
an initial acoustic model from a combination of
licensed corpora, an initial corpus of learner
speech, and sometimes corpus data from similar
languages and integrate it into the first beta ver-
sion of the TLCTS course. We then recruit beta
testers to start training with the software. It records
samples of their speech, which we use to retrain
the speech recognizer. Each successive version of a
TLCTS speech recognizer has improved perform-
ance over the previous versions because it is
trained on speech data collected from the previous
versions.

The speech recordings must be annotated to
indicate the phoneme boundaries. Speech annota-
tion is time-consuming but has a critical effect on
the quality of the resulting acoustic model. Corpo-
ra licensed from other sources often have annota-
tion errors and need to be reannotated.

Each language model includes a grammar-based
model built from phrases extracted from the
authored content and a default “garbage model”
constructed with a fixed number of acoustic class-
es, states, and probability mixtures. If the learner
speaks an utterance that is in the recognition
grammar, the grammar-based model will usually
recognize it with higher confidence than the
garbage model does, and if the utterance is out of
grammar the garbage model will recognize it with
higher confidence. The garbage model rejects
many utterances that the learners know are incor-
rect, and forces learners to speak the language with
at least a minimum level of accuracy. By adjusting
the properties of the garbage model we can adjust
the recognizer’s tolerance of mispronounced
speech.

Language learners normally produce several
types of errors in their speech, including pragmat-
ic errors (for example, failure to adhere to cultural
norms in discourse), semantic errors (for example,
word confusions), syntactic errors, morphological
errors, and pronunciation errors. Where possible
we use the speech recognizer to explicitly detect
these errors, using language models that are
designed to detect language errors. Pronunciation
error detection is handled as a special case. Earlier
versions of TLCTS attempted to detect pronuncia-
tion errors on a continual basis in the Skill Builder
(Mote et al. 2004). However, evaluations identified
problems with this approach: it was difficult to
detect pronunciation errors reliably in continuous

Articles

78 AI MAGAZINE

Content Metric Tactical
Iraqi
3.1

Tactical
Iraqi
4.0

Tactical
French
1.0

Tactical
Dari 1.0

Lessons 35 52 40 51

Lesson pages 891 2027 1920 2139

Words 1072 2214 1820 1199

Example dialogues 42 85 67 44

Active dialogues 13 29 36 31

Table 1. Content Size of TLCTS Courses.

Articles

SUMMER 2009 79

speech (leading to user frustration), and the con-
tinual feedback tended to cause learners to focus
on pronunciation to the exclusion of other lan-
guage skills. We have since adopted a different
approach where the system does not report specific
pronunciation errors in most situations, but
instead provides a number of focused exercises in
which learners practice particular speech sounds
they have difficulty with.

Speech-recognition performance depends in
part on the authored content, and so we have
developed authoring guidelines and tools that
enable content authors to create learning materials
suitable for speech recognition without requiring
detailed knowledge of the workings of speech-
recognition technology. When authors write dia-
logues and exercises, they specify alternative ways
of phrasing these utterances, some of which are
well formed and some of which may illustrate
common learner errors. These are used to create
recognition grammars that recognize learner
speech as accurately as possible. Authors can mark
phrases as “ASR-hard,” meaning that the automat-
ed speech recognizer (ASR) should not be applied
to them and they should be excluded from the
speech-recognition grammar. Since speech-recog-
nition accuracy tends to be better on longer phras-
es, individual words (which sometimes appear on
lesson pages) are sometimes excluded in this way.

We have used learner data to evaluate speech-
recognition performance for the current languages
and obtained recognition rates of 95 percent or
above for in-grammar utterances. However the
training data is skewed towards male users and
beginner users (reflecting our current user popula-
tion), which makes the performance degrade for
female and advanced users. Learners with a variety
of accents, including regional American accents
and foreign accents, have used the system and
have obtained adequate recognition rates.

Despite these positive results, users have raised
issues about the speech-recognition function. For
example, some users complained that the recog-
nizer did not recognize what they thought were
valid utterances. These problems can be caused by
several reasons. First, some acoustic models (for
example, for French) were built using proportion-
ally more native data (than nonnative) and as such
are less forgiving of mispronounciations. Other
users complain that they found the ASR too
lenient. We have responded to these problems in
part by allowing the learner to individually adjust
the garbage model (see above) to make it appear
more or less lenient of mistakes. A second reason
for these problems is that the ASR uses grammars
that change for each specific part of the system.
These grammars are compiled from existing con-
tent, and thus reflect whatever subset of the lan-
guage we are teaching. Therefore, a native or fluent

speaker usually manages to produce an utterance
that is not recognized because it is outside of the
system’s grammar. We have been working on tech-
niques to extend these grammars while maintain-
ing recognition rates (Meron, Valente, and John-
son 2007). Finally, many complaints assumed
unrealistic expectations as to the type of noise the
system could sustain while keeping recognition
rates. A user sent us some system recordings with a
loud TV program in the background and still com-
plained that the recognizer was not working well.
In response, we developed a speech quality assess-
ment module that gives the learner feedback about
possible indications of poor voice recording—lev-
els too low or too high, excessive periods of silence,
noise, or indications that the beginning or end of
the recording was clipped. This is displayed first as
the background color on a small waveform dis-
play—red for poor recording quality, green for
good, yellow for marginal. If a user clicks that dis-
play, a larger window appears that compares the
learner’s speech with the native speaker’s.

Modeling Dialogue
One key challenge for the dialogues in TLCTS is to
manage the variability of the spoken inputs a
learner may produce. On one hand, we wish to
attain high variability, meaning that the system
should recognize, properly interpret, and react to a
large subset of the language. On the other hand,
we wish to author interactions that train specific
language and culture skills, not unconstrained dia-
logue. Furthermore, increasing the size of the lan-
guage subset makes speech recognition and inter-
pretation much harder. Our strategy to balance
those needs is to manage variability in two layers.
In the speech layer, we constrain the speech to be
recognized in such a way that we can limit the pos-
sible utterances and improve ASR performance as
described above. In the act layer, we manage the
possible acts the user can perform and the map-
ping from speech to acts.

We originally created linear scripts and
branched scripts and annotated each utterance
with an act name. We then manually translated
the text scripts into hard-coded programs. This
translation included the logic for plot progression
and character control, as well as the mapping from
user input (the text output by the ASR) to actions
in the game world (in the form of a list of input-
action pairs). However, we found out that scripts
were too restrictive a medium in that they limited
the act variability. We could improve the situation
by manually programming more complex algo-
rithms in software code, but that approach
required a programmer to complete the scene
(which was both expensive and nonscalable), and
it was impossible to verify whether the code was
consistent with the author’s intent.

In our current methods, authors write specifica-
tions of dialogue interactions at the act level. To
increase the variability of dialogue that the frame-
work supports, we introduced utterance templates
into the dialogue specifications. An utterance tem-
plate is a combination of a more flexible grammar
definition syntax (which allows increased variabil-
ity in user inputs) with additional syntactic con-
structs used to specify semantic content allowing
parameterized utterances (which increases vari-
ability in possible responses). The grammar is
passed directly to the speech recognizer, and when
an utterance is parsed it comes with semantic
annotation that indicates information such as the
type of action or action-object specified in the
utterance. We have developed tools maintaining
these utterance templates and have been working
on mechanisms for managing libraries of utterance
templates (Meron, Valente, and Johnson 2007).

Believable Virtual Humans
A central feature of our approach is to put the user
in a social simulation with nonplayer characters
(NPCs)—virtual humans. Our original virtual
human behavior generation pipeline was relative-
ly simple. An input from the player would be pro-
vided as an abstract act (say, greet_respectfully) to an
agent implemented in PsychSim (Si, Marsella, and
Pynadath 2005). The agent system would specify
an act for its NPC to perform (for example,
inquire_identity). An XML file would specify the
utterance and any animations that needed to be
performed to realize that act; sometimes also a
small script in Python would be called to perform
more complex physical actions (say, walk over a
specific place). More recently, we have adopted a
variant of the SAIBA framework (Vilhjalmsson and
Marsella 2005), which separates intent planning
(the choice of courses of action—to complain,
cooperate, make a request, and so on—that are
adequate to the situation at hand) from the pro-
duction of believable physical behavior.

We originally used the PsychSim agent system to
perform intent planning (Si, Marsella, and Pyna-
dath 2005). While PsychSim is highly expressive,
its agents are extremely hard to author and com-
putationally complex. The modeling language is
not well suited to represent dialogues or world
knowledge. We then turned to a finite-state
machine approach that authors can use to specify
moderately complex scenarios and that has proved
scalable to large numbers of dialogues (for exam-
ple, Tactical French has more than 50). We devel-
oped additional idioms to help us author certain
conversation patterns. For example, we use range-
qualified transitions to implement a simple form
of the “beat” concept as used in Façade (Mateas
and Stern 2005). This helped us more easily speci-
fy bits of dialogue that can be used within certain

phases of the story but do not directly change the
story state beyond indirect effects such as increas-
ing rapport. We are now designing a third genera-
tion of intent planning called LightPsych, which is
an integrated framework where agents can operate
at any of four levels—self (explicitly model beliefs,
short- and long-term memory, and so on), culture
(model and reason with politeness, and social
norms), physical and social environment and dia-
logue (understand dialogue openings and closings,
requests, turn-taking, negotiations, and the mean-
ing of utterances). A key challenge for LightPsych
is to make it easy to create and reuse agent-behav-
ior specifications and handle the most common
interactions between trainees and NPCs but also to
give authors tools to add to and modify these spec-
ifications to handle the aspects that are unique to
each scenario.

A critical issue is the representation of rich com-
municative acts. We started representing acts as
strings that encoded some of the parameters need-
ed by PsychSim agents. However, to accurately rep-
resent the richness of conversational speech, we
need a richer representation for speech acts. We
looked at frameworks such as FrameNet (Baker,
Fillmore, and Lowe 1998) before creating our own
ontology of communicative acts based on the
typology proposed by Traum and Hinkelman
(1992) and extended with new acts (for example,
offering greetings, thanks, support, and so on)
based on the work by Feng and Hovy (2006). We
also added representations of conversational con-
text, such as the characteristics and roles of inter-
locutors, and the state of the world in which the
conversation takes place. Our new act representa-
tion format extends the functional markup lan-
guage (FML) but extends it in a number of ways
(Samtani, Valente, and Johnson 2008).

With respect to the generation of animated
behavior, we have found that our initial hand-cod-
ed solution was optimally flexible but hampered
our efforts to lower costs and speed development.
Further, these scripting or motion capture
approaches may work if the social context is fixed
and known ahead of time but break down if the
social environment is dynamic. Therefore, we
started working on automating the production of
behavior animation from intent and are exploring
the use of representations such as the behavior
markup language (BML).6

Learner Modeling
As learners use TLCTS courses, it is important to
track whether the learners are making progress
toward learning objectives. Evidence for progress
can come from multiple sources: the trainees’ per-
formance on games and quizzes, their performance
in dialogues, and their performance generally in
the TLCTS games. TLCTS records the learners’ per-

Articles

80 AI MAGAZINE

Articles

SUMMER 2009 81

formance in quizzes and dialogues, but also
attempts to estimate the learners’ mastery of key
skills, using a technique inspired by the model-
tracing technique of Corbett and Anderson (1995).
Authors annotate exercises, quiz items, and dia-
logue exchanges to indicate the skills that they
employ. Skills are drawn from a taxonomy of
enabling learning objectives, encompassing lin-
guistic skills, cultural skills, and task skills. Each
correct or incorrect use of a given skill provides
probabilistic evidence of mastery of that skill. This
evidence is uncertain because learners may guess
an answer or slip and make an unconscious mis-
take, or the speech recognizer may misinterpret
the learner’s response. However, after a relatively
short amount of training time the learner model is
usually able to correctly identify the individual
skills that the trainee has mastered.

This learner model provides learners, trainers,
and researchers with a rich view of trainee
progress. We plan to use it as a basis for automated
provision of training guidance, to advise learners
about where they should focus their efforts, and
when to adjust the amount of scaffolding to
increase or decrease the level of challenge of the
game. We also plan to use it as a starting point for
estimating learner progress toward achieving
longer-term learning objectives such as general
spoken language proficiency.

Application Development
and Deployment

The TLCTS system developed over several years,
starting as a research project at the University of
Southern California (USC) Information Sciences
Institute and later at Alelo. The original project at
USC spanned about four years starting in 2003,
and its continuation at Alelo started in 2005. Costs
for the development of the underlying science and
technology have been around $5 million to date;
costs for the engineering work to make it deploy-
able have been more than $1 million, and course
development costs have gone down from the
$800,000 range to $300,000–$600,000, depending
upon the target language and culture. This was first
funded by Defense Advanced Research Projects
Agency (DARPA) and U.S. Special Operations Com-
mand (USSOCOM) and more recently by U.S.
Marine Corps, Army, and Air Force and the Aus-
tralian Defence Forces.

Throughout the project we have adopted an iter-
ative development strategy. The goal is to produce
new versions of the system every several months,
deploy and evaluate these new versions, and use
the evaluation results to inform the next spiral. We
believe that research and development benefit from
use in practice and that each real-life testing stage
provides critical feedback. Indeed, we believe that a

good deal of the success of TLCTS has stemmed
from acting upon the feedback from our users.

Some of the key development challenges have
been related to delivery. The transition from a
research prototype to a widely used application
required significant engineering effort to develop
good installers, integrate the components more
closely, improve performance, add user interface
polish, and so on. The early version of the archi-
tecture was intended as a platform for experimen-
tation (for example, using agent-oriented integra-
tion mechanisms), but the architecture then had
to be simplified and streamlined to be stable and
fast enough for a deployed system. At several
points we had to sacrifice flexibility for perform-
ance, stability, and ease of use. For example, the
original implementation of the Skill Builder was
built on top of a separate courseware platform
(ToolBook), but users found it cumbersome to
switch back and forth between separate Skill
Builder and Mission Game applications. We there-
fore converted the Skill Builder to run on top of the
game engine, which was unfortunately less flexi-
ble—for example, only later were we able to recov-
er the ability to play videos in our lessons.

Just as we have restructured and improved the
system architecture, we have progressively
improved the curricula that TLCTS supports. This
has often involved incremental revisions of sub-
stantial bodies of learning content, as well as the
representations of that content. We have therefore
invested significant effort to developing authoring
and conversion tools (see the section on Author-
ing) to support this maintenance process. Our use
of XML schemas and translators has greatly facili-
tated this evolution in representations.

We have come to recognize the collaborative
nature of content development in the TLCTS
mode. The original implementation of an author-
ing tool for TLCTS was based on a concept of a
stand-alone desktop tool used by one author at a
time—an unrealistic assumption. The latest itera-
tions have embraced the idea of a web application
and emphasized features to manage the collabora-
tion process and cater to the specific needs of the
different types of users (linguists, artists, produc-
tion staff, programmers, and so on.)

Application Use and Payoff
Tactical Iraqi was first deployed in June of 2005.
Since then, several expanded and improved ver-
sions have been released, and additional courses
have been developed. Courses are available in mul-
tiple versions for different user communities: for
U.S. Marine Corps, U.S. Army, and non-U.S. mili-
tary forces and civilian aid workers.

The courses are used by individuals training on
their own and as part of organized training pro-

grams. Anyone with a .mil e-mail account can reg-
ister and download copies either for their own use
or for installation in computer labs. In January
2008, a typical month, there were 910 downloads
of Tactical Iraqi, 115 downloads of Tactical Pashto,
and 146 downloads of Tactical French.

Patterns of usage depend upon availability of
training time and suitable computers. Many learn-
ers who download copies for their own use study
them to completion; depending upon the course,
this can require 200 or more hours of training. For
military unit training, 20 to 40 hours of training
are more the norm due to conflicting demands on
training time. Some units combine TLCTS training
with classroom training, whereas others rely exclu-
sively on TLCTS for their language and culture
training.

Several independent evaluations of Tactical Iraqi
and Tactical Pashto have been performed by the
U.S. military, the Canadian Forces, and the Aus-
tralian Defence Force. Results from several rigorous
evaluations have been reported in Surface and
Dierdorff (2007) and Johnson and Wu (2008). Sur-
face and Dierdorff studied several subject groups:
268 military advisors training at Fort Riley, Kansas;
113 members of the Seventh Marine Regiment;
and 8 trainees at the Defense Language Institute
Foreign Language Center (DLIFLC). All groups
trained for a total of 40 hours, either with Tactical
Iraqi alone or a mixture of Tactical Iraqi and class-
room instruction. All showed significant gains in
knowledge of Arabic language and culture and
greater self-confidence in communicating in Ara-
bic. The greatest learning gains were achieved by
the DLIFLC group, which trained exclusively with
Tactical Iraqi and followed our recommended pro-
gram of instruction. Six out of 8 participants
achieved an ILR proficiency level of 0+ after 40
hours of training.

The marines in the Seventh Marine Regiment
were subjects of a Marine Corps Lessons Learned
study. The Third Battalion, Seventh Marines (3/7
Marines) returned from their most recent tour of

duty in Iraq in December of 2007. The battalion
had assigned two members of each squad to under-
take 40 hours of Iraqi Arabic language and culture
training prior to deployment. The experience of
the 3/7 Marines was particularly noteworthy
because the battalion did not suffer a single com-
bat casualty during its tour of duty. To understand
the role of Tactical Iraqi in the Seventh Marines’
success, members of the two battalions were asked
to complete questionnaires and the officers in
charge of the 3/7 were interviewed. The question-
naires are still being tabulated, but transcripts of
the officer interviews are available, and their com-
ments are strikingly positive. The marines who
trained with Tactical Iraqi were able to perform
many communicative tasks on their own, without
reliance on interpreters. This enhanced the battal-
ion’s operational capability, enabled the battalion
to operate more efficiently, and resulted in better
relations with the local people. This provides indi-
rect evidence that Tactical Iraqi contributed to a
Kirkpatrick level 4 training effect (that is, impact
on job performance) (Kirkpatrick 1994). Follow-on
assessments of the 3/7 Marines’ language retention
are planned for this year.

Future Work
We continue to improve TLCTS based on experi-
ence gained with earlier versions of TLCTS courses.
Current work includes broadening the architecture
to support reading and writing skills and deepen-
ing the curricula and platform to help learners
attain higher levels of language proficiency. Lan-
guage proficiency training is particularly challeng-
ing because it helps trainees get to the point where
they can construct and understand new sentences
in the target language, which complicates speech
processing.

We continue to develop our web-based Wele
client as an option for learners with less powerful
computers. The increased ease of installation and
use will hopefully compensate for the reduced lev-

Articles

82 AI MAGAZINE

Kona big island Honua world

Hilo a Polynesian navigator Keaka theater

Hua
(hua’olelo)

word Wele (puna welewele) (spider) web

Waihona library Uku (ukulele) flea

Lapu ghost Paheona art

Huli search Hoahu warehouse

Kahu administrator

Glossary of Hawaiian Terms.

Articles

SUMMER 2009 83

Vilhjalmsson, H., and Marsella, S., 2005.
Social Performance Framework. In Modular
Construction of Humanlike Intelligence:
Papers from the 2005 AAAI Workshop.
Technical Report WS-05-08, Association for
the Advancement of Artificial Intelligence,
Menlo Park, CA.

W. Lewis Johnson is cofounder, president,
and chief scientist of Alelo Inc. Prior to that
he was a research professor in computer sci-
ence at the University of Southern Califor-
nia/Information Sciences Institute. Alelo
realizes his vision to promote the learning
of foreign languages and cultural compe-
tency worldwide. Alelo’s game-based learn-
ing environments are in widespread use by
military trainees in the United States and
other countries. This work has been recog-
nized by multiple awards, including the
2005 DARPATech Significant Technical
Achievement Award, the 2007 I/ITSEC Seri-
ous Games Challenge, and the 2008 Los
Angeles Technology Council Award. Alelo
is now partnering with Yale University to
develop integrated suites of learning mate-
rials for Chinese and other languages and
is developing web-based learning materials
for distribution worldwide by Voice of
America. Johnson holds an A.B. in linguis-
tics from Princeton University and a Ph.D.
in computer science from Yale University.
He is a member of the steering committees
of the International Artificial Intelligence
in Education Society, the International
Conference on Intelligent User Interfaces,
and the International Foundation for
Autonomous Agents and Multi-Agent Sys-
tems.

Andre Valente is cofounder and CEO of
Alelo Inc. Alelo’s game-based learning envi-
ronments are in widespread use by military
trainees in the United States and other
countries. This work has been recognized
by multiple awards, including the 2005
DARPATech Significant Technical Achieve-
ment Award, the 2007 I/ITSEC Serious
Games Challenge, and the 2008 Los Ange-
les Technology Council Award. Prior to
Alelo, Valente worked as an executive for
software startup companies, managed soft-
ware development, and consulted for busi-
nesses in the software, manufacturing,
media, and aerospace areas. He also worked
as a research scientist at the University of
Southern California. Valente received a
Ph.D. in computer science from the Uni-
versity of Amsterdam and an MBA from the
University of Southern California. He has
published three books and more than 50
technical articles on knowledge manage-
ment, knowledge systems tools. and busi-
ness process management.

el of three-dimensional rendering and
interaction that will result from the
constraints of web applications.

We are adapting TLCTS virtual-
human technologies so they can be
integrated into mission rehearsal
training simulations. The training
simulations will be populated with
nonplayer characters that speak the
target language. This poses new chal-
lenges for authoring since military
trainers with no special technical
training will create their own virtual
worlds and populate them with non-
player characters.

We continue to develop new cours-
es and develop pilot versions of future
courses. A Chinese course for college
and high school Chinese programs is
currently being developed in collabo-
ration with Yale University. A pilot
Cherokee game, intended to help pre-
serve Native American language and
culture, is being developed in collabo-
ration with Thornton Media, Inc.

Acknowledgments
This work is funded in part by the
Defense Advanced Research Projects
Agency (DARPA), U.S. Marine Corps
PM TRASYS, U.S. Army RDECOM,
USS OCOM, U.S. Air Force, DLIFLC,
and Yale University. Opinions ex -
pressed here are those of the authors,
not the U.S. government.

Notes
1. Many of the architecture components
have Hawaiian names. Hawaii, a cultural
crossroads, is evocative of Alelo’s mission
to promote cross-cultural interchange. A
glossary of Hawaiian terms is included in
this article.

2. www.adobe.com/products/flex/

3. developer.apple.com/ipod

4. htk.eng.cam.ac.uk

5. julius.sourceforge.jp/en_index.php

6. www.mindmakers.org/projects/BML

References
Baker, C.; Fillmore, C.; and Lowe, J. 1998.
The Berkeley FrameNet Project. In Proceed-
ings of the 36th Annual Meeting of the Associ-
ation for Computational Linguistics and 17th
International Conference on Computational
Linguistics. San Francisco: Morgan Kauf-
mann Publishers.

Corbett, A., and Anderson, J. R. 1995.
Knowledge Tracing: Modeling the Acquisi-

tion of Procedural Knowledge. User Model-
ing and User-Adapted Interaction 4(4): 253–
278.

Feng, D., and Hovy, E. 2006. Learning to
Detect Conversation Focus of Threaded
Discussions. Proceedings of the Human
Language Technology/North American
Association of Computational Linguistics
Conference (HLT-NAACL 2006). New York:
Association for Computing Machinery.

Johnson, W. L., and Wu, S. 2008. Assessing
Aptitude for Language Learning with a Seri-
ous Game for Learning Foreign Language
and Culture. Proceedings of the Ninth Inter-
national Conference on Intelligent Tutoring
Systems. Lecture Notes in Computer Science
5091. Berlin: Springer.

Kirkpatrick, D. L. 1994. Evaluating Training
Programs: The Four Levels. San Francisco:
Berrett-Koehler.

Mateas, M., and Stern, A. 2005. Structuring
Content in the Façade Interactive Drama
Architecture. In Proceedings of the First Arti-
ficial Intelligence and Interactive Digital Enter-
tainment Conference. Menlo Park, CA: AAAI
Press.

Meron, J.; Valente, A.; and Johnson, W. L.
2007. Improving the Authoring of Foreign
Language Interactive Lessons in the Tacti-
cal Language Training System. Paper pre-
sented at the SLaTE Workshop on Speech
and Language Technology in Education,
Farmington, PA, 1–3 October.

Mote, N.; Johnson, W. L.; Sethy, A.; Silva,
J.; and Narayanan, S. 2004. Tactical Lan-
guage Detection and Modeling of Learner
Speech Errors; The Case of Arabic Tactical
Language Training for American English
Speakers. Paper presented at the
InSTIL/ICALL 2004 Symposium on Com-
puter Assisted Learning, Venice, Italy, 17–
19 June.

Samtani, P.; Valente, A.; and Johnson, W.
L. 2008. Applying the SAIBA Framework to
the Tactical Language and Culture Training
System. Paper presented at the First Func-
tional Markup Language Workshop,
AAMAS 2008, Estoril, Portugal, 13 May.

Si, M.; Marsella, S. C.; and Pynadath, D.
2005. THESPIAN: An Architecture for Inter-
active Pedagogical Drama. Proceedings of the
Twelfth International Conference on Artificial
Intelligence in Education. Amsterdam, The
Netherlands: IOS Press.

Surface, E., and Dierdorff E. 2007. Special
Operations Language Training Software Meas-
urement of Effectiveness Study: Tactical Iraqi
Study Final Report. Tampa, FL: U.S. Army
Special Operations Forces Language Office.

Traum, D., and Hinkelman, E. 1992. Con-
versation Acts in Task-Oriented Spoken
Dialogue. Computational Intelligence 8(3):
575–599.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [630.000 810.000]
>> setpagedevice

